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Background
An unprecedented number of genomes are being sequenced, offering a unique view 
of the specific characteristics of individual organisms and new opportunities to ana-
lyze life on a larger scale. An essential first step in the genome annotation process is 
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the identification of all the coding regions of the genome. However, discovering genes 
in the new genome assemblies is challenging, especially in eukaryotes where the aim is 
to establish accurate gene models with precise exon–intron structures of all genes [1, 
2]. While model organisms such as human or mouse are well-studied and experimen-
tal evidence is available for many genes [3–5], many sequences for non-model organ-
isms are predicted by computational pipelines and may thus be incomplete or incorrect 
[6–8]. Furthermore, erroneous gene predictions are often propagated across genomes 
by homology-based genome annotation strategies. As a result, nucleotide and protein 
repositories, such as UniProt [9], RefSeq [10] or Ensembl [11], contain an increasing 
number of sequence errors or inaccuracies [12, 13].

Commonly encountered errors include missed proteins [14, 15], wrong exon and gene 
boundaries [16], non-coding nucleotide sequence retention in coding exons [17], as well 
as fragmentation or fusion of gene models [18]. These errors can be propagated in down-
stream applications, leading to incoherent or incorrect conclusions [19, 20]. Errors can 
severely affect studies of individual proteins, including transcript quantification, phylo-
genetic tree inference, and protein structure or function predictions. It has also been 
shown that gene prediction errors can lead to biases in large-scale statistical studies [19, 
21, 22]. Therefore, DNA and protein sequence quality is essential and sequence informa-
tion needs to be accurate, reliable, and accessible in a clear and consistent manner [23, 
24].

Various strategies have been developed to help identify and correct errors in gene 
annotations, using information from comparative or evolutionary analyses [25–27], 
experimental evidence from expressed sequence tags (ESTs) or RNA-sequencing (RNA-
seq) [22, 28], or dedicated sequence datasets such as the G3PO benchmark [29]. These 
studies generally agree that up to 50% of the protein sequences in the public databases 
have an least one error. However, very few studies have attempted to identify the under-
lying reasons for the badly predicted sequences.

Here, we use a large set of 176,478 proteins from a representative set of ten primates 
in order to characterize different types of gene prediction errors and investigate their 
causes. The protein sequences were downloaded from the Uniprot reference proteomes 
and RefSeq databases. To identify potential sequence errors, including insertions, dele-
tions and mismatched segments, we compared the primate sequences to the canonical 
isoforms of all known human proteins in the UniProt database. The UniProt canoni-
cal sequence for a given human protein generally corresponds to the most frequent or 
most conserved protein isoform in orthologous species. We then focused on the primate 
protein sequences containing mismatched segment errors, i.e. where part of the correct 
protein sequence is replaced with an alternative erroneous sequence, as shown in the 
example in Fig. 1. These errors cause particular problems for downstream applications, 
since the badly predicted amino acids can significantly affect structural and functional 
annotations, as well as conservation and phylogenetic analyses.

Results
Identification of sequence errors in primate proteins

To estimate the frequency of gene prediction errors, a large set of primate protein 
sequences was extracted from the Uniprot reference proteome database. The human 
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proteome was used as a reference, since the proteins have been very widely studied and 
for the purposes of this study, are assumed to be accurate. By comparing closely related 
primate sequences with the human proteins, we could identify potential gene predic-
tion errors in the other primate proteomes  (Fig.  2). Orthologous relationships were 
predicted using BLASTP searches, where each human protein sequence was used as a 
query to search each primate proteome. Starting with the 20,595 human proteins, we 
thus obtained between 14,000 and 19,000 orthologous protein sequences for each pri-
mate (Table 1). In total, 176,478 orthologous proteins were retrieved from the primate 
proteomes, with an average of 85.7% of the human sequences found in each primate.

Potential gene prediction errors were detected based on the MSAs of the orthol-
ogous proteins. For the 176,478 primate sequences extracted from Uniprot, a total 

Fig. 1  Part of the MSA of the Human Liprin-Alpha-4 protein (first from top) with orthologous proteins in nine 
other primates. The sequence from Otolemur garnettii (H0WHH2) contains a ‘mismatched segment’ in the 
region highlighted by blue square brackets

Fig. 2  Schema of transcript correction protocol. Blue boxes represent exons and are labeled P-E(i) for primate 
exon number i and H-E(i) for human exon number i. Horizontal thin blue lines represent introns. Red box 
represents a primate sequence segment coding for a mismatch, compared to the human sequence (dark 
green box). Light green box represents a significant TBLASTN hit or high-scoring segment pair (HSP), which 
will be inserted in the primate gene as a new exon
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of 82,305 sequence errors were identified, including insertions, deletions and mis-
matched segments (Table  2). In other words, 47% of the protein sequences are 
expected to have at least one error in agreement with previous studies. Internal dele-
tions were the most commonly detected errors (29,045), followed by internal inser-
tions (12,436) and mismatched segments (11,015). More errors were detected at the 
N-terminus than at the C-terminus for both sequence extensions (10,280 and 4573, 
respectively) and deletions (10,264 and 4672, respectively), although this could be due 
at least in part to the error detection algorithm used.

Table 1  Primate proteomes, number of orthologous proteins and human orthology rates

Organism TAXID Uniprot proteome No. 
of predicted 
orthologs

% Human sequences 
with a primate ortholog

Homo sapiens (Human) 9606 UP000005640 20,595 100.0

Pan Troglodytes (Chimpanzee) 9598 UP000002277 19,010 92.3

Gorilla gorilla gorilla (Gorilla) 9595 UP000001519 18,540 90.0

Macaca mulatta (Macaque) 9544 UP000006718 18,327 89.0

Macaca fascicularis (Crab-eating 
macaque)

9541 UP000233100 17,976 87.3

Chlorocebus Sabaeus (Vervet-AGM) 60,711 UP000029965 17,948 87.1

Papio Anubis (Olive baboon) 9555 UP000028761 17,904 86.9

Pongo abelii (Orangutan) 9601 UP000001595 17,814 86.5

Nomascus leucogenys (Gibbon) 61,853 UP000001073 17,478 84.9

Callithrix jacchus (Marmoset) 9483 UP000008225 17,110 83.1

Otolemur garnettii (Bushbaby) 30,611 UP000005225 14,371 69.8

Table 2  Number of  protein sequence errors detected in  Uniprot primate sequences, 
for each of the error types

Primate N-terminal 
extension

N-terminal 
deletion

C-terminal 
extension

C-terminal 
deletion

Internal 
insertion

Internal 
deletion

Mismatched 
segment

Total 
errors

Callithrix 
jacchus

1427 398 532 274 1315 1593 694 6233

Chlorocebus 
Sabaeus

914 1870 480 766 1840 2901 992 9763

Gorilla 
gorilla 
gorilla

820 1104 389 392 828 3211 1043 7787

Macaca fas-
cicularis

918 667 448 295 964 2016 703 6011

Macaca 
mulatta

1657 402 661 235 1702 1403 561 6621

Nomascus 
leucog-
enys

757 1446 478 554 1186 6744 2641 13,806

Otolemur 
garnettii

603 1879 271 682 1417 2352 1887 9091

Papio Anubis 1134 434 500 286 1108 2342 1091 6895

Pongo abelii 1183 1673 370 981 1280 4877 802 11,166

Pan troglo-
dytes

867 391 444 227 796 1606 601 4932

TOTAL 10,280 10,264 4573 4692 12,436 29,045 11,015 82,305
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As shown in Fig. 3, the frequency of gene prediction errors (normalized by the num-
ber of orthologous proteins detected) is not the same for all primate proteomes tested. 
While all the primates have globally similar distributions of the seven types of protein 
sequence error, some proteomes had significantly more errors than others. The number 
of errors per sequence ranges from 0.26 for P. troglodytes proteins to 0.79 for N. leucog-
enys proteins.

Mismatch gene prediction errors

We then focused our analyses on the 11,015 potential mismatch sequence errors, as 
these cause specific problems for subsequent analyses. Mismatches were identified in 
all of the primate proteomes, with the lowest number of mismatches occurring in the 
M. mulatta protein sequences (561 mismatches, or 0.03 per protein) and the highest 
number of mismatches in the N. leucogenys sequences (2641 mismatches, or 0.15 per 
protein).

To determine whether the mismatch error rate was linked to the evolutionary distance 
of the primates from the human reference, the percentage of sequences with at least one 
mismatch error was calculated for each primate proteome (Fig. 4a). While most of the 
primates have a mismatch rate between 2 and 5%, we identified two primates (O. gar-
nettii, N. leucogenys) with as many as 11–12% of their sequences containing at least one 
mismatch. Surprisingly, the primate showing the highest mismatch rate (N. leucogenys) 
is not the most distant from human according to the tree of life (Fig. 4b). Furthermore, 
G. g. gorilla, which is very close to human in the tree of life, has a medium mismatch rate 
of 5.5%. These results taken together show that mismatch detection is not only depend-
ent on the phylogenetic distance between primates and human, and there must be other 
factors to explain these observations.

Finally, to investigate whether the mismatch error rates were an issue related spe-
cifically to protein sequences from the Uniprot database, the same detection protocol 
was applied using the RefSeq protein database as the source for the primate reference 
proteomes. A similar number of orthologous proteins (181,223 primate proteins) were 
extracted from the RefSeq database, however 5971 mismatch errors were detected, com-
pared to 11,015 for the Uniprot sequences. We conclude that mismatches are present in 
both databases, although the error rates seem to be lower in RefSeq than in Uniprot.

Fig. 3  Frequency of gene prediction errors per protein sequence, in each of the Uniprot primate proteomes
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Characterization of mismatch errors

To understand why mismatch errors were detected in the Uniprot protein sequences, 
each mismatch error was characterized using nine different features. These features 
can be divided into three categories: (i) features suggesting that our mismatch identi-
fication protocol identified a real gene misprediction, (ii) features suggesting that our 
mismatch identification protocol identified a false positive mismatch (for example, a 
mismatch resulting from a wrong ortholog prediction or a MSA error), and (iii) fea-
tures that were uncertain (not clear whether the detected mismatch corresponds to a 
gene misprediction or a false positive). Out of 11,015 mismatches, 7401 (67.2%) could 
be associated with one or more features, leaving one third of the mismatches so far 
unexplained (Table 3).

Almost half of the potential mismatches (5446 mismatches, 49.4%) were associated 
uniquely with evidence of a gene misprediction error (details are provided in Addi-
tional file  1). The most frequent feature associated with misprediction is the pres-
ence of undefined genomic regions (represented by N characters) in introns or exons, 
which were found in 47.7% of all mismatches. Introns shorter than the minimum 
length of 30 nucleotides required for a functional intron [30], are found in 8.5% of all 
mismatches. The presence of short introns is also sometimes linked to the presence of 
several small primate exons, corresponding to a single exon in the human gene (5.5%). 
Figure 5a shows an example of a badly predicted sequence from G. gorilla (G3S2R3_
GORGO), which has an exon in the wrong frame compared to the human gene and 
an intron of length 21 nucleotides. A deletion of 2 bases compared to the exon of the 
human reference sequence A7F2E4_HUMAN (golgin A8 family member A) is prob-
ably due to a genome sequencing error. The sequence could be improved by creating 

Table 3  Characterization of 11,015 mismatched sequence segments in primate sequences, 
according to nine different features

Class Feature No. (%) of errors

Evidence of gene prediction error Genomic sequence contains N characters (introns or 
exons)

5256 (47.7%)

Primate sequence contains short introns (< 30 nucleo‑
tides)

937 (8.5%)

1 Human exon aligned with ≥ 3 primate exons 611 (5.5%)

Non-canonical splice sites in human sequence 237 (2.2%)

Frameshift in primate exon sequence 138 (1.3%)

Evidence of false positive error Human isoform exists that matches primate sequence 1194 (10.8%)

Multiple alignment error 244 (2.2%)

In a repeated protein region 232 (2.1%)

Mixed evidence Mismatch associated with evidence of both gene predic‑
tion error and false positive error

341 (3.1%)

Unconfirmed Conserved in ≥ 4 primates 1054 (9.6%)

Mismatch associated with evidence of gene prediction 
error only

5446 (49.4%)

Mismatch associated with evidence of false positive error 
only

4174 (37.9%)

Mismatch associated with at least 1 feature 7401 (67.2%)

Mismatch associated with 0 features 3614 (32.8%)
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an alternative longer exon in the correct reading frame, although this means intro-
ducing a short intron of only 7 nucleotides.

Other factors causing gene mispredictions include the presence of frameshifts in 
the primate exon sequences (1.3%) or the use of non-canonical splice sites in human 
sequences (2.2%). Figure  5b shows an example of a badly predicted primate sequence 
(A0A096NZ82_PAPAN) from P. Anubis, which is orthologous to the human sequence 
Q15858_HUMAN (Sodium channel protein type 9 subunit alpha) with non-canonical 
splice sites. A completely corrected primate sequence can be proposed if non-canonical 
splice sites are allowed in the gene model.

A number of false positive mismatches (37.9%) were found that could not be reliably 
classified as gene prediction errors. For 10.8% of all mismatches, an alternative human 
isoform could be found in the Ensembl database corresponding to the primate sequence. 
In this case, the mismatch error was probably caused by the definition of different 
canonical isoforms for human and primate sequences in the Uniprot database.

Fig. 4  Comparison of primate sequence error rates and evolutionary distance from the human reference 
proteome. a Percentage of sequences with at least one mismatched segment for each primate. b 
Phylogenetic tree of the 11 primates included in the study, including the reference Homo sapiens. Asterisks 
indicate the species with high protein sequence error rates
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Finally, 12.7% of the mismatches were associated with at least one feature, but the 
cause of the error remains unconfirmed. These unconfirmed cases were mainly due to 
the detection of the mismatch in four or more primates (9.6% of all mismatches), which 
suggests that either the same misprediction was propagated across multiple primates 
or the human protein sequence is in fact significantly different from the non-human 
primates and the mismatch is a false positive. The remaining 3.1% of mismatches were 
associated with both misprediction evidence and false positive evidence and were also 
classed as ‘Unconfirmed’.

Correction of mismatch errors

For the primate sequences containing mismatches linked to gene misprediction, we then 
tried to correct the mismatch errors using the correction protocol defined in the Meth-
ods section. The protocol first identifies the human sequence segment corresponding to 

Table 4  Number of sequence errors identified before and after correction of 603 primate 
sequences

Error type No. of errors 
before correction

No. of errors 
after correction

Difference

Internal insertion 340 132 − 208

Internal deletion 816 785 − 31

Mismatch 833 263 − 570

N-terminal insertion 32 32 0

N-terminal deletion 80 90  + 10

C-terminal insertion 29 26 − 4

C-terminal deletion 54 52 − 2

TOTAL 2184 1379 − 805

Mean % identity 91.9% 95.0%  + 3.1%

Mean % coverage 89.5% 90.7%  + 1.2%

Fig. 5  Example mismatched segments corresponding to gene prediction errors. a A deletion of 2 bases in 
the primate sequence G3S2R3 results in misprediction of 5′ part of exon. b Non-canonical splice sites in the 
human sequence Q15858 and misprediction of the primate sequence A0A096NZ82. Black boxes represent 
exons with nucleotide sequences shown in upper case, and protein sequences shown below the translated 
exon sequence. For the correctly predicted exons, alternate codons are shown in green. For the badly 
predicted exons, alternate codons are shown in red. Intron sequences are in lower case, with splice sites in 
blue
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the primate mismatch error and then uses the human segment to perform a TBLASTN 
search for a conserved segment in the primate genome. Out of 5446 mismatches asso-
ciated with misprediction, refined sequences were proposed for 603 of them (~ 11%). 
The remaining mismatches could not be improved due to either a lack of significant 
TBLASTN hits, or issues with the integrity of the refined primate transcript.

To validate the proposed error corrections, the refined sequences were realigned with 
the human reference sequence and the error detection protocol was again performed 
on the full-length protein sequences. The number of sequence errors detected for the 
original and the refined proteins are shown in Table  4. A significant decrease in gene 
prediction errors can be observed, especially for the number of mismatched segments as 
might be expected. For the 603 proteins, 833 mismatch errors were detected in the origi-
nal sequences, while only 263 were detected after refinement, i.e. 570 mismatch errors 
were fully corrected. The remaining mismatches (263) could not be corrected for several 
reasons: the refined sequence contains false positive mismatch errors due to MSA errors 
for example, or the correction protocol badly predicted the new sequence.

Interestingly, we also observed a decrease in the number of internal insertion errors, 
since the mismatch refinement could also affect nearby internal insertions. In contract, 
a small increase in the number of N-terminal deletions was observed, due to the new 
CDS prediction during the correction protocol. When the original start codon cannot 
be mapped onto the new transcript (for example, when the mismatch error occurs at the 
beginning of the protein), an alternative start codon is used, leading to possible N-termi-
nal deletion errors. Taking into account all the error types, the correction protocol leads 
to a decrease of 37% in the number of detected sequence errors.

We then estimated the quality of the refined primate sequences, by calculating the per-
cent sequence identity and coverage for the original and refined primate sequences, com-
pared to the human reference. On average, a small increase in both scores is observed 
after refinement, of + 3.1% and + 1.2% respectively (Table 4). However, the differences 
between the scores before and after correction between are not the same for the 603 
sequences, as shown in Fig. 6. Some sequences had an increase in % sequence identity of 
> 50% and in coverage of > 45%, indicating the correction of very long mismatch errors. 
In contrast, a decrease in coverage was observed for a small number of sequences. This 
is probably be due to over-alignment of the mismatch-containing sequence, since the 
mismatched segment is aligned to the human reference even when it is not homologous, 
artificially boosting the original coverage score.

For most of the primates, higher quality sequences were proposed for between 20 and 
80 proteins, while for N. leucogenys, 262 sequences were improved, representing 43% of 
the 603 corrections. This is not surprising since this primate is closely related to humans, 
and had the highest percentage of sequences with mismatch errors (Fig. 4).

Discussion
DNA and protein sequence databases are increasingly useful research tools, but to maxi-
mize their potential, the errors in them need to be addressed. Contrary to expectations, 
advances in genome sequencing technologies have led to an increased number of pro-
tein sequence errors in public databases, including incomplete, incorrect or inconsistent 
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sequences. Here, we used MSAs of closely related sequences to detect potential errors in 
primate proteins and investigate the underlying causes.

We used a simple protocol based on BLASTP searches (using very strict thresholds to 
limit the number of false positives) to identify potential orthologs of human proteins in 
ten primate proteomes. This method was chosen because it is time-efficient, convenient 
and allows identification of sequences in the most recent protein databases. More accu-
rate tools for orthology detection have been developed, such as eggNOG [31], OrthoIn-
spector [32], or OrthoFinder [33]. However, these methods are computationally costly 
and are not always updated with each release of the Uniprot, Ensembl or RefSeq data-
bases. The strict thresholds used in our protocol mean that we eliminated many primate 
orthologs, for example for Otolemur garnettii, orthologs were identified for only 69% of 
the human reference sequences (Table 1). In the future, it would be useful to incorporate 
other methods, such as Reciprocal Blast Hits, in order to extend the method to allow 
analysis of more orthologs, as well as to other groups of organisms. Nevertheless, it is 
important to point out that our protocol relies on the presence of a well-studied organ-
ism with characterized proteins that can be used as a reference.

We then chose to focus our analyses on the sequence errors involving mismatched 
segments, since mismatch errors can have a serious effect on downstream analyses. 
Mismatched segments generally arise when an exon is translated in the wrong reading 
frame, or the exon boundaries are badly predicted and a non-coding nucleotide sequence 
is translated instead. To ensure that the mismatched segments detected by our proto-
col were indeed caused by such errors in gene prediction, we eliminated the mismatch 
errors that were associated with the possible identification of primate paralogs instead 
of orthologs, or misalignments during the MSA construction process. This resulted in a 
total of 11,015 mismatch errors in Uniprot protein sequences, and 5971 mismatch errors 

Fig. 6  Boxplots of the difference before and after correction for a percent sequence identity and b percent 
sequence coverage, for each of the 603 primate protein sequences



Page 11 of 16Meyer et al. BMC Bioinformatics          (2020) 21:513 	

in RefSeq proteins. The difference in the number of mismatches can be partly explained 
by the fact that, in the Uniprot reference proteomes only one ‘canonical’ protein is pro-
vided for each gene, while in RefSeq all protein isoforms are listed, reducing the number 
of false positive mismatches due to the definition of alternative isoforms (with different 
exon–intron structures) for different species.

By mapping the Uniprot proteins to their genomic sequences in the Ensembl data-
base, we investigated the underlying reasons for the predicted errors. Unfortunately, 
the extraction of the same information for the RefSeq sequences could not be fully 
automated, but we intend to address this issue in the future. Almost half (47.7%) of the 
11,015 mismatch errors in the Uniprot sequences could be attributed to the presence of 
undetermined regions in the genomic sequences (represented by ‘N’ characters), caus-
ing misprediction of the gene exon–intron structures. Surprisingly, the undetermined 
region was not always located within the mismatched exon, and in these cases our error 
correction protocol was able to identify the correct exon sequence and improve the 
quality of the translated protein sequence.

Many of the remaining mismatch errors could be linked to other issues in the primate 
genome sequencing and/or assembly processes. For example, a large number of primate 
proteins (937) had abnormal introns of length < 30 nucleotides. In Human, it has been 
suggested previously that the minimal length for an intron to be processed is 30 nucleo-
tides [30]. A number of mismatches were also linked to the presence of insertions or 
deletions of a small number of nucleotides (non-multiple of 3) within the exon sequence, 
meaning that part of the protein was predicted in the wrong frame or several short exons 
were predicted corresponding to one human exon. These results taken together clearly 
suggest that more robust gene prediction algorithms are needed that incorporate strate-
gies for genome error detection or quality control.

Finally, a number of mismatch errors (237) were associated with the presence of non-
canonical splice sites in the human reference gene, suggesting that the gene model used 
in the original primate genome annotation was incomplete and might be improved by 
taking into account non-canonical splice sites.

To test whether strategies could be developed to correct gene prediction errors, we 
implemented a simple error correction protocol as a proof-of-concept. A total of 603 
protein sequences were refined and led to a significant reduction in the number of 
sequence errors, from 2184 errors before correction to 1379 errors after correction. The 
protocol involves the insertion of new exons in the primate transcripts, although the new 
exons are not guaranteed to have canonical splicing sites. This was done in order to pro-
duce a more accurate protein sequence, at the expense of transcript logic where splicing 
rules are not respected. This is only a first step in the improvement of gene prediction 
algorithms, but it demonstrates that the available primate genomes could be exploited to 
correct the primate proteins in public sequence databases.

Conclusions
To conclude, by comparing ten primate proteomes with the human reference proteome, 
we showed that mismatch errors are frequent in primate proteomes, where the per-
centage of sequences having a mismatch error ranges from 2 to 12% depending on the 
primate species. Based on the features we identified, the reasons causing two thirds of 
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these mismatches could be identified. Half of all potential mismatches were associated 
with evidence of gene misprediction. Interestingly, we showed that the existing primate 
genomes contain signals allowing improvement of these sequences.

The error detection protocol used here could be improved by the addition of new 
characterization features to understand the reasons for the detected mismatch errors 
that were not explained in our analyses, and to highlight the unexplained errors that 
may in fact be biological deviations representing organism specificities or innovations. 
It would also be interesting to extend our quality control protocol to other misprediction 
error types, such as insertions or deletions, as well as to the study of genomes from other 
species.

We hope that the results of this work will provide useful information for the develop-
ment of more reliable gene prediction algorithms, as well as for downstream analyses 
that rely on high quality protein sequences. For example, the analysis protocol is cur-
rently being integrated in a new variant prediction system, called MISTIC [34], which 
uses the information in MSAs to predict the pathogenicity of human genome variants.

Methods
Human reference protein sequences

Human protein sequences are well studied and for the purposes of this study, are 
assumed to be accurate. The Homo sapiens reference proteome (UP000005640) from 
Uniprot (downloaded in Dec. 2019) was used for the reference protein sequences and 
we selected the canonical isoform for each human gene. A total of 20,596 human protein 
sequences, annotated as ‘Reviewed’ in the Uniprot database, were extracted.

Orthologous sequences from primate proteomes

Potential orthology relationships between human proteins and all (Reviewed and Unre-
viewed) proteins from ten primates (Pan Troglodytes, Gorilla gorilla gorilla, Macaca 
mulatta, Macaca fascicularis, Chlorocebus Sabaeus, Papio Anubis, Pongo abelii, Nomas-
cus leucogenys, Callithrix jacchus, Otolemur garnettii) were predicted using a simple 
protocol based on BLASTP [35] searches in the Uniprot reference proteome database. 
For each human protein sequence, the best hit in each of the ten primates was consid-
ered as an orthologous protein if it has an e-value < 10–50 and sequence identity > 80%. 
Table  1 shows details of the primate proteomes used and the number of predicted 
orthologous sequences.

Orthologous sequences were also identified using the same protocol in the proteomes 
corresponding to the ten primates in the RefSeq database (release 98). In this case, pro-
tein isoforms of the same gene are not grouped in the same database entry, we retained 
all protein sequences identified in the BLASTP searches with the same thresholds as 
above, i.e. an e-value < 10–50 and sequence identity > 80%.

Multiple alignments and detection of sequence errors

For each of the 20,596 human proteins, a multiple sequence alignment (MSA) of the 
primate orthologous sequences was constructed using the MAFFT program [36]. Each 
of MSA was analyzed to detect potential insertions, deletions and mismatches in the 
orthologous sequences using the SIBIS program [37]. SIBIS uses a Bayesian framework 
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combined with Dirichlet mixture models to identify inconsistent sequence segments 
representing potential sequence errors. The Bayesian approach provides a strong theo-
retical foundation for modeling the amino acid frequencies found at a specific alignment 
position. SIBIS combines a prior distribution of amino acid probabilities, with observed 
amino acid frequencies at homologous positions within the related proteins, in order to 
calculate scores for new sequences. The predicted errors are classified into seven catego-
ries: N-terminal deletion, N-terminal extension, C-terminal deletion, C-terminal exten-
sion, internal deletion, internal insertion and mismatched segment.

For this study, we focused on potential sequence mismatches, where a mismatch was 
defined as a sequence segment that is at least 20 amino acids long with less than 50% 
sequence identity between the human reference and the primate sequences. In addi-
tion, to exclude false positive mismatch errors due to wrong ortholog detection or MSA 
errors, mismatching sequences in primates that were significantly longer or shorter 
than the human sequence (primate sequence length three times longer or shorter than 
human) were excluded.

Phylogenetic trees

Phylogenetic relations between organisms were determined using the LifeMap tool [38] 
by extracting a subtree based on the list of organisms of interest. The subtree was visual-
ized using iTOL [39] generate the tree figures.

Intron–exon maps and genomic sequences

To perform more in-depth analysis of mismatch errors, Uniprot protein sequences were 
mapped to their transcript IDs in the Ensembl database (release 99) using the Uniprot 
Retrieve/ID mapping tool. For each transcript, the CDS and genomic sequence were 
retrieved, as well as intron and exon positions on the genomic sequence.

Mismatch characterization

For each potential mismatch error detected by SIBIS, the mismatch sequence segment 
was located on the exon/intron map, CDS and genomic region. To identify the potential 
causes of the mismatch error, nine features were defined and classified into three catego-
ries (Gene misprediction, False positive, Undetermined) as follows:

Evidence of a Gene prediction error involves five possible features:

i	A low quality genomic sequence, containing ‘N’ characters indicating undetermined 
or ambiguous nucleotides (IUPAC nomenclature) probably caused by genome 
sequencing errors or assembly gaps,

j	 Short introns in the primate sequence (< 30 nucleotides), since in Human, it has been 
shown previously that the minimal length for an intron to be processed is 30 nucleo-
tides [30],

k	 A mismatch coded by a single exon in human compared to > 3 exons in the primate 
sequence,

l	 Non-canonical splice sites (not GT/AG) in the human mismatch sequence,
m	 The presence of a small nucleotide insertion in the primate exon sequence causing a 

frameshift.
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Evidence that the detected mismatch is in fact a False positive (i.e. the mismatch is due 
to inaccuracies in the quality control protocol) involves three possible features:

i	The existence of alternative human isoform in the Ensembl database that does not 
Generate a mismatch at that position,

j	 MSA alignment errors,
k	 Mismatches in a sequence region with repeats.

The mismatch was characterized as Undetermined if one feature was detected, namely 
that the same mismatch is identified in four or more primates in the MSA, or a mixture 
of Gene misprediction and False positive evidence was identified.

Mismatch error correction protocol

For the mismatch errors classified as gene mispredictions, a simple protocol was imple-
mented to try to improve the quality of the protein sequence. Given a primate protein 
sequence with a mismatch error compared to the human sequence, the error correction 
protocol involves four steps (outlined in Fig. 2) as follows:

1	 Using the human sequence segment as a query, perform a TBLASTN search in the 
primate genomic region corresponding to the transcript.

2	 If a hit is found with an e-value < 0.001 and sequence identity > 80%, it is inserted into 
the primate transcript as a new exon.

3	 Verify the integrity of the new transcript, by checking for overlapping or inverted 
exons, frameshifts and stop codons in the inserted sequence.

4	 Create a new CDS and protein sequence.

To estimate the quality of the new protein sequence, the modified primate sequence 
was realigned with the human reference protein. Two scores were used to evaluate the 
quality of the primate sequences:

	(i)	 Percent sequence identity I was defined as I = i/N × 100, where i is the number of 
identical amino acids in the alignment and N is the total number of non-gap posi-
tions in the alignment.

	(ii)	 Percent sequence coverage C was defined as C = N/Ntot × 100, where N is the num-
ber of non-gap positions in the alignment and Ntot is the total length of the align-
ment.

Implementation

The analyses were performed using an Sqlite3 database, in-house bash and Python (ver-
sion 2.7) scripts, and numpy (numpy.org), pandas (pandas.pydata.org) and matplotlib 
(matplotlib.org) Python libraries. The Biopython (biopython.org) package was used to 
perform pairwise alignments during the mismatch characterization step. To retrieve 
large amounts of data from the Ensembl database, the grequests (pypi.org) package was 
used to perform asynchronous application programming interface (API) requests. The 
Json (www.json.org) library was used to process Ensembl API output.

http://www.json.org
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